A New and General Synthetic Pathway to *Strychnos* **Indole Alkaloids: Total Syntheses of (**−**)-Dehydrotubifoline and (**−**)-Tubifoline by Palladium-Catalyzed Asymmetric Allylic Substitution**

Miwako Mori,* Masato Nakanishi, Daisuke Kajishima, and Yoshihiro Sato

Graduate School of Pharmaceutical Sciences, Hokkaido University, *Sapporo 060-0812, Japan*

mori@pharm.hokudai.ac.jp

Received April 7, 2001

A novel procedure for the synthesis of an indole skeleton was developed. Treatment of a cyclohexenol derivative having a silyloxymethyl group at the 2-position with *^N***-tosyl-***o***-bromoaniline in the presence of Pd2dba3**'**CHCl3 and (***S***)-BINAPO gave compound 6a with 84% ee in 75%** yield. Compound 6a was converted into 11, which was treated with Pd(OAc)₂ and Me₂PPh in the presence of Aq₂CO₃ to give indoline derivative **12. From 12, we succeeded in the total syntheses of (**−**)-dehydrotubifoline and (**−**)-tubifoline.**

There are many alkaloids having an aromatic ring connected to a cyclohexane ring. Palladium-catalyzed asymmetric allylic substitution is a very attractive procedure for the synthesis of these alkaloids. We have already reported the syntheses of $(-)$ -mesembrane,^{1a} $(-)$ -mesembrine,^{1a} $(+)$ crinamine,^{1b} (-)-haemanthidine,^{1b} and (+)-pretazetine^{1b} from 2-arylcyclohexenylamine derivatives **3** prepared by palladium-catalyzed asymmetric allylic substitution.¹ It is expected that intramolecular allylic substitution of **1a** using Pd(0) would afford indoline derivative **3a**. However, there is no functional group in **3a** except the double bond, and the synthesis of a natural product from **3a** would therefore be difficult. Thus, we made an alternative plan for the synthesis of indole alkaloids. If cyclohexenol derivative **4** having a functional group at the 2-position were reacted with *o*-bromoaniline derivative **5a** in the presence of a palladium

catalyst with a chiral ligand, $\frac{2}{3}$ compound 6 would be obtained as a chiral form. Treatment of **6** with Pd(0) would give indoline derivative **7**, which should be a useful precursor for the synthesis of indole alkaloids.

At first, we selected 2-carboethoxycyclohexenol derivative **4a**. ³ When methyl carbonate **4a** was reacted with allyl tosylamide **8** (1.1 equiv) in the presence of 2.6 mol % of $Pd_2(dba)_3$ ⁻CHCl₃ and 5.2 mol % of (*S*)-BINAPO⁴ in DMF at room temperature for 3 h, allylamine derivative **9a** was obtained in 40% yield, but the ee of **9a** was only 5%5 (Table

^{(1) (}a) Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y. *J. Org. Chem.* **1997**, *62*, 5265. (b) Nishimata, T.; Mori, M. *J. Org. Chem.* **1998**, *63*, 7586. (c) Nishimata, T.; Yamaguchi, K.; Mori, M. *Tetrahedron Lett.* **1999**, *40*, 5713.

⁽²⁾ After we reported the palladium-catalyzed asymmetric allylic substitution of a 2-arylcyclohexenol derivative, similar reactions were reported by two groups: (a) Trost, B. M.; Toste, F. D. *J. Am. Chem. Soc.* **2000**, *122*, 11262. (b) Hamada, Y.; Sakaguchi, K.; Hatano, K.; Hara, O. *Tetrahedron Lett*. **2001**, *42*, 1297.

⁽³⁾ Graff, M.; Al Dilaimi, A.; Seguineau, P.; Rambaud, M.; Villeras, J. *Tetrahedron Lett*. **1986**, *27*, 1577.

⁽⁴⁾ Grubbs, B. H.; DeVries, R. A. *Tetrahedron Lett*. **1977**, *18*, 1879.

⁽⁵⁾ Conversion of **9a** into **9c** was carried out by treatment with LiAlH4. The ee of **9c** was determined by HPLC analysis using DAICEL CHIRAL-PAK AD (hexane/^{*i*}PrOH 9:1).

1, run 1). Treatment of **4b** and **4c** with **8** in the presence of a palladium catalyst did not afford the desired product (runs 2 and 3). In the case of **4c**, palladium black was precipitated during the reaction and none of the product was formed except the starting material. However, when cyclohexenol derivative **4d** having a benzyloxymethyl group at the 2-position was reacted with **8** in the presence of a palladium catalyst, the desired product **9d** was obtained in 49% yield and the ee showed 34%.⁶ The result was very encouraging, and the silyl group was chosen as a protecting group. When compound $4e$ ($R = CH_2OSi^tBuMe_2$) was treated with 2.6 mol % of $C_2BINADO$ mol % of $Pd_2(dba)$ ³ CHCl₃ and 5.2 mol % of (*S*)-BINAPO in THF at room temperature for 100 h, **9e** with 78% ee was obtained in 53% yield.⁶ The use of DMF as a solvent enhanced the reaction rate, and **9e** was obtained in 70% yield after only 3.5 h (run 5). Various silyl groups were examined, and in each case, the ee was almost same (runs $6-8$).

Asymmetric Allylic Substitution ^a Table 1.								
R 4	OCO2Me _z		NHTs 8 Pd_2 (dba) ₃ CHCl ₃ (S)-BINAPO, rt	R	9	Ţs		Sቹ ኬያ Sዙ ኬ (S) -BINAPO
юn	R		solvent	time(h)		yield $(\%)$	ee (%)	4 (%)
1	COOB	4a	DMF	3	9а	40	5	
\overline{c}		4b	THF	24				84
3	СН, ОН	4с	DMF	13				29
4	$CH2$ OBn	4d	THF	28	9d	49	34	36
5	CH ₂ OTBDMS	4е	THF	100	9е	53	78	23
6	CH ₂ OTBDMS	4e	DMF	3.5	9е	70	77	
7	CH ₂ OTES	4f	DMF	2	9f	66	71	
8	CHOTBDPS	4g	DMF	12	9g	57	75	

^{*a*} All reactions were carried out using $Pd_2(dba)$ ₃·CHCl₃ (2.6 mol %) and (*S*)-BINAPO at room temperature.

Subsequently, *N*-tosylaniline **5b** ($X = H$) was used as a nucleophile, and **6b** was obtained in 85% yield (Table 2, run 1).

The use of *N*-tosyl-*o*-bromoaniline **5a** gave a desired compound **6a** in 78% yield, and the ee⁷ was 80% (run 2). To enhance the reactivity of the leaving group, vinyl carbonate 4h was used,⁸ and the reaction was carried out at 0 °C to give **6a** with 84% ee in 75% yield (run 3). The lower reaction temperature did not affect the ee of **6a** (run 4).

Next, we tried to synthesize an indoline derivative from **6a** using a palladium catalyst. When a DMF solution of **6a** was warmed at 90 °C for 24 h in the presence of $Pd(OAc)₂$ (5 mol %), PPh₃ (10 mol %), and $Ag_2CO_3^9$ (1 equiv), we were pleased to find that indoline derivatives **10a** and **10b** were obtained in 50% yield in a ratio of 5.3 to 1. The result of an NOE experiment of **10a** showed that the stereochemistry of the fused five-six-membered ring was a *cis*configuration. As a ligand, dimethylphenylphosphine gave **10** in high yield, although the ratio of **10a** to **10b** was 3 to 1 (run 3). Isomerization product **10b** was not found when DMSO was used as a solvent (run 5).

On the basis of these results, we focused on a total synthesis of *Strychnos* alkaloids, which include $(-)$ -tubifoline, $(-)$ -tubifolidine, and $(-)$ -strychnine. Our target molecule was $(-)$ -tubifoline,¹⁰ which has been synthesized by several groups,¹¹ as a racemic^{11a-d} or a chiral form.^{11e} A retrosynthetic analysis of $(-)$ -tubifoline is shown in Scheme 2. $(-)$ -Tubifoline would be synthesized from **I**, which would be obtained from tetracyclic compound **II**. The synthesis of indoline derivative **III** from **IV** has already been demon-

⁽⁶⁾ The ee's of **9d** and **9e** were determined after conversion into **9c**. 5

⁽⁷⁾ The ees of **6a** and **6b** were determined by HPLC analyses using DAICEL CHIRALCEL OJ-R (CH3CN/H2O 9:1) and DAICEL CHIRAL-CEL OJ (hexane/*ⁱ* PrOH 9:1) after desilylation by treatment with 4 N HCl, respectively.

⁽⁸⁾ Mori, M.; Nishimata, T.; Nagasawa, Y.; Sato, Y. *Ad*V*. Synth. Catal.* **2001**, *343*, 34.

⁽⁹⁾ The use of silver salts suppressed alkene isomerization in the Heck reaction: Abelman, M. M.; Oh, T.; Overman, L. E. *J. Org. Chem.* **1987**, *52*, 4130.

⁽¹⁰⁾ For the isolation and structural elucidation of this alkaloid, see: Kump, W. G.; Patel, M. B.; Rowson, J. M.; Schmid, H. *Hel*V*. Chim. Acta* **1964**, *47*, 1497.

strated. Thus, for the synthesis of **II**, compound **IV** ($R¹$ = CN) would be suitable.

Compound **6a** was converted into **11**, which was treated with 2 mol % of $Pd(OAc)$ and 4 mol % of $PMe₂Ph$ in the presence of Ag_2CO_3 (1 equiv) in DMSO at 90 °C for 17 h to give indoline derivative **12** in 87% yield (Scheme 3). No olefin isomerization product was produced. The result of an

 a (i) 4 N aqueous HCl; (ii) PBr₃; (iii) NaCN; (iv) 2 mol % Pd(OAc)₂, 4 mol % Me₂PPh, Ag₂CO₃ (1 equiv), DMSO, 90 °C, 17 h.

NOE experiment showed that the ring junction of the fused five-six-membered ring was also *cis*.

Treatment of 12 with LiAlH₄ followed by protection of nitrogen gave **13** in 66% yield. Allylic oxidation of **13** with $Pd(OAc)_2$ in the presence of benzoquinone and MnO_2^{12} gave the expected tetracyclic compound **14** in 77% yield. The amide nitrogen attacked the double bond on the cyclohexene ring coordinated to Pd(II) to produce **14**. Regioselective hydroboration of **14** with 9-BBN proceeded smoothly at 50 $\rm ^{\circ}C$ followed by treatment with $\rm H_{2}O_{2}$ and NaOH to give the alcohol, which was oxidized to give ketone **15** in 70% yield. Treatment of **15** with potassium hexamethyldisilazide and then PhNTf₂ afforded the enol triflate,¹³ which was converted into olefin **16** by treatment with HCO2H and *ⁱ* Pr2NEt in the presence of $Pd(OAc)_2$ and PPh_3^{14} in 64% yield.

 a (i) LiAlH₄; (ii) Boc₂O; (iii) 10 mol % Pd(OAc)₂, 40 mol % benzoquinone, MnO₂ (2 equiv) AcOH, 50 °C, 20 h; (iv) 9-BBN, 50 °C, then H_2O_2 ; (v) Swern oxidation; (vi) PhNTf₂, KHMDS; (vii) Pd(OAc)₂, PPh₃, HCO₂H, *i*Pr₂NEt; (viii) Na-naphthalenide. (ix) CF_3CO_2H ; (x) **18**, K_2CO_3 ; (xi) 10 mol % Pd(OAc)₂, Bu₄NCl (1) equiv) K_2CO_3 (5 equiv) DMF, 60 °C, 3 h. (xii) H_2 , PtO₂, EtOH, rt.

Deprotection of the tosyl group of **16** with sodium naphthalenide followed by treatment with $CF₃CO₂H$ gave

^{(11) (}a) Danson, B. A.; Harley-Mason, J.; Foster, G. H. *Chem. Commun.* **1968**, 1233. (b) Takano, S.; Hirama, M.; Ogasawara, K. *Tetrahedron Lett*. **1982**, *23*, 881. (c) Ban, Y.; Yoshida, K.; Goto, I.; Oishi, T.; Takeda, E. *Tetrahedron* **1983**, *39*, 3657. (d) Amat, M.; Linares, A.; Bosch, J. *J. Org. Chem.* **1990**, *55*, 6299. (e) Amat, M.; Coll, M.-D.; Bosch, J.; Espinosa, E.; Molins, E. *Tetrahedron: Asymmetry* **1997**, *8*, 935.

⁽¹²⁾ Hansson, S.; Heumann, A.; Rain, T.; Akermark, B. *J. Org. Chem.* **1990**, *55*, 975.

diamine. Monoalkylation with 18^{15a} in the presence of K_2 -CO3 proceeded smoothly to give **17** in 49% yield from **16**. Intramolecular Heck reaction using a palladium catalyst^{15a,16} gave a pentacyclic compound in 59% yield, whose ¹H and ¹³C NMR spectra agreed with those of $(-)$ -dehydrotubifoline reported in the literature.¹⁵ However, the $[\alpha]_D$ value of $(-)$ dehydrotubifoline is not known. Thus, hydrogenation of $(-)$ dehydrotubifoline with $PtO₂$ in EtOH was carried out to give (-)-tubifoline, whose $[\alpha]_D$ value¹⁷ and ¹H and ¹³C NMR spectra agreed with those reported in the literature.^{10,18} The

Jr.; Overman, L. E. *J. Am. Chem. Soc.* **1993**, *115*, 3966.

(18) Schumann, D.; Schmid, H. *Hel*V*. Chim. Acta* **¹⁹⁶³**, *⁴⁶*, 1996.

result indicated that the absolute configuration of the product **6a**, which was obtained by asymmetric allylic substitution, was *S*. Thus, we succeeded in the total synthesis of $(-)$ dehydrotubifoline and $(-)$ -tubifolin from allylamine derivative **6a**, which was synthesized by palladium-catalyzed asymmetric allylic substitution, via 16 steps. All steps for the ring constructions were achieved using the palladium catalysts.

Further studies on the asymmetric synthesis of *Strychnos* alkaloids are now in progress.

Supporting Information Available: Experimental procedure and spectral data of **4h**, **9a**, **9d**-**f**, **6a**,**b**, **10a**, **¹¹**- 17, $(-)$ -dehydrotubifoline, and $(-)$ -tubifoline. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0159571

^{(13) (}a) Stang, P. J.; Dueber, T. E. *Org. Synth.* **1974**, *54*, 79. (b) McMurry, J. E.; Scott, W. J. *Tetrahedron Lett*. **1983**, *24*, 979.

⁽¹⁴⁾ Cacchi, S.; Morera, E.; Orter, G. *Tetrahedron Lett*. **1984**, *25*, 4821. (15) (a) Rawal, V. H.; Michoud, C.; Monestel, R. F. *J. Am. Chem. Soc.* **1993**, *115*, 3030. (b) Crawley, G. C.; Harley-Mason, J. *Chem. Commun.* **1971**, 685. (c) Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W.,

⁽¹⁶⁾ Jeffery, T. *Tetrahedron Lett*. **1985**, *26*, 2667.

^{(17) 84%} ee, $[\alpha]^{22}$ _D -311 (*c* 0.236, AcOEt).